THE OHIO STATE UNIVERSITY

Introduction to D3.js, Part |

By Rui Li
09/07/2021

THE OHIO STATE UNIVERSITY

Slide Material Source Credits

https://www.d3indepth.com/

https://d3js.org/
https://www.d3-graph-gallery.com/

HTML tutorial

Prof. Han-Wei Shen, Jiayi Xu, and Wenbin He

https://www.d3indepth.com/
https://d3js.org/
https://www.d3-graph-gallery.com/
https://www.w3schools.com/js/js_htmldom.asp

THE OHIO STATE UNIVERSITY

Recall

D3 — introduction
D3 basics

set up

data loading
selection

data binding

scales, color mapping

axis

o g hAWN =

A

name
London
New York
Sydney
Paris
Beijing

B
population
8674000
8406000
4293000
2244000
11510000

London
New York
Sydney
Paris

Beijing

2,000,000

4,000,000

6,000,000

8,000,000 10,000,000 12,000,000

THE OHIO STATE UNIVERSITY

Population
C O I O r L e g e n d (l) 2,ooc|>,ooo 4,ooc|),ooo Waooo
London
New York
- From scratch Syaney
Paris

= Existing libraries

° d 3 CcO I or I eq en d 0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000

Beijing

- blueberries . oranges . apples

https://observablehq.com/@d3/color-legend

THE OHIO STATE UNIVERSITY

Color Legend

let legendData = d3.range(@, d3.max(data.map(d => d.
population)), d3.max(data.map(d => d.population)) / 10);
let legendXScale = d3.scalelLinear()
- Implement from Scratch .cri-zr::i.r;([(/[)O,3gzir)nax(data.map(d => d.population))])
d3.select('svg')
.append("g")
; .attr("transform", "translate(50,250)")
* render axis or text selectAlL(" rect)|
.data(legendData)
join('rect')

— I — .attr('x', function (d, i) {

T T
0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000
return legendXScale(d);

* render legend shapes (e.g., rectangles and circles)

})

. attr('width', 20)
blueberries oranges apples !
- . . .attr('height', 10)
.style('fill', function (d) {
return colorScale(d);

});

d3.select('svg').append("g")
.attr("transform", "translate(50,260)")
.call(d3.axisBottom(legendXScale).ticks(5))

THE OHIO STATE UNIVERSITY

Color Legend

= D3 — color legend - continuous <svg>
. C e <g class="chart" transform="translate(50, 30)">
 create an <g> element with an id inside your </g>
SVG <g id="legend" transform="translate(150, 180)">
- create the legend using the Legend function </g>
</svg>

- append the legend to the <g> element

//continous legend
const legend = Legend(d3.scaleSequential([0, d3.max
(data.map(d => d.population))], d3.interpolateBlues), {
title: "Population"
Population })

I e o E——

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 document.getElementById("legend").appendChild(legend);

THE OHIO STATE UNIVERSITY

Color Legend

= D3 — color legend - nominal
« create an <div> element with an id

- create the legend using the Swatches function
 update the <div>'s HTML content with the legend

<div id="dis-legend">

</div>
<svg>
<g class="chart" transform="translate(50, 30)">

. blueberries . oranges . apples

//discreate legend

const discreteLegend = Swatches(d3.scaleOrdinal(["blueberries",
"oranges", "apples"], d3.schemeCategoryl9));
d3.select("#dis-legend").html(discretelLegend);

0
2
N © .E .W..
L5 5 5 S
z = Q O X g 2 O
: Q 8O0 08 ,L,E >, 5 09
S Vnrrya.nb.w.nluho
: c 7 < o
Z — N a<<W o O I OLw
m u 3.....3.....
m - A A
E O . .
=
-

THE OHIO STATE UNIVERSITY

D3 SVG shapes

In D3, we could create an SVG shape directly.

= rect (rectangle)

= circle
d3.select('.chart') London
. .selectAll('rect"') New York
u Ilne .data(data) Sydney

.join('rect') Paris
attr("x", 80) Beiling
.attr("y", function (d, i) {

return yScale(d.name);

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000

})

attr("width", function (d, i) {
return xScale(d.population);

})

.attr("height", yScale.bandwidth())

.style("fill", function (d, i) {
return colorScale(d.population);

})

.style("stroke", "white");

THE OHIO STATE UNIVERSITY

D3 SVG shapes - Rectangle

<rect style="fill: #69b3a2" stroke="black" x=10 y=100, width=300 height=40></rect>

// create svg element:
var svg = d3.select("#rect").append("svg").attr("width", 800).attr("height", 200)

// Add the path using this helper function
svg.append('rect')

.attr('x"', 10)

.attr('y', 100)

.attr('width', 300)

.attr('height', 40)

.attr('stroke', 'black')

attr('fill', '#69a3b2');

THE OHIO STATE UNIVERSITY

D3 SVG shapes - Rectangle

Example: Heatmap

svg.selectAll()
.data(data, function(d) {return d.group+':'+d.variable;})
.join("rect")
.attr("x", function(d) { return x(d.group) })
.attr("y", function(d) { return y(d.variable) })
.attr("width", width)
.attr("height", height)

.style("fill", function(d) { return myColor(d.value)})

I J

| 1M

THE OHIO STATE UNIVERSITY

Demo

| 12

THE OHIO STATE UNIVERSITY

D3 SVG shapes - Circle

<circle style="fill: #69b3a2" stroke="black" cx=100 cy=100 r=40></circle>

svg.append('circle')
.attr('cx', 100)
.attr('cy', 100)
attr('r', 40)
.attr('stroke', 'black')
Lattr('fill', '#69a3b2');

THE OHIO STATE UNIVERSITY

D3 SVG shapes - Circle

Example: Scatterplot

. svg.append('g"')
.selectAl1("dot")
] .data(data)
5+ | ° .join("circle")
N .'a“:'c:m... .attr("cx", function (d) { return x(d.Sepal_Length); })
o .attr("cy", function (d) { return y(d.Petal_Length); })
a ¢ .attr("r", 5)
2 ° ’ : .style("fill", function (d) { return color(d.Species) })
14 @@ .

T T T T T T T 1
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

| 14

THE OHIO STATE UNIVERSITY

Demo

| 15

THE OHIO STATE UNIVERSITY

D3 SVG shapes - Line

<line stroke="red" x0=10 y0=10, x1=500 y1=100></line>

svg.append('line")
.attr('x1', 10)
.attr('yl', 10)
.attr('x2"', 500)
.attr('y2', 100)
.attr('stroke', 'red')

THE OHIO STATE UNIVERSITY

D3 SVG shapes - Line

Example: Lollipop chart

// Lines in lollipop

i ° svg
11,000,000 | .selectAll("myline")
.data(data)
10,000,000 — enter()
9,000,000 ® .append("line")
‘ 11} " .
8000000 .attr("x1", function (d) {
return x(d.name);
7,000,000 —
})
6,000,000 - attr("x2", function (d) {
5,000,000] return x(d.name);
4,000,000 . }) .
.attr("y1", function (d) {
3,000,000 return y(d.population);
2,000,000 — })
attr("y2", y(0))
1,000,000 .attr("stroke", "black") // set the line colour
0 | , .style("stroke-width", 1) // set the stroke width
& N © .
\9060 eé‘éd\ os\b(@ @ Q)é;&&

THE OHIO STATE UNIVERSITY

Demo

| 18

THE OHIO STATE UNIVERSITY

D3 shapes

In d3, shapes are made up of SVG path elements (d3.path)

The path element has a d attribute which defines the shape of the path.

moveTo (20, 20) moveTo
lineTo(120, 20)
//<path d=“M 20 20 L 120 120">

lineTo

| 19

https://github.com/d3/d3-path

THE OHIO STATE UNIVERSITY

Lines — Line generator

= lineGenerator is a function that takes an array of coordinates as input and
outputs a path data string

| var lineGenerator = d3.line(); : e !
| i* Constructs a new line
gegeci ey | generator =

[0, 80], e
[100, 100],
1200, 301,
1300, 501,
[400, 40],
[500, 80]

I;

var pathData = lineGenerator(points);
d3.select('path')
.attr('d', pathData)

Lattr('fill', 'none')
.attr('stroke', 'black')

| 20

- e o

THE OHIO STATE UNIVERSITY

Lines — Line generator

= lineGenerator is a function that takes an array of coordinates as input and

outputs a path data string

var lineGenerator = d3.line();

var points = |

[0, 80],

[100,
[200,
[300,
[400,
[500,

var pathData = lineGenerator(points);

d3.select('path')

Define an array of
coordinates

attr('d’,
Lattr('fill’,
.attr('stroke',

pathData)

THE OHIO STATE UNIVERSITY

Lines — Line generator

= lineGenerator is a function that takes an array of coordinates as input and
outputs a path data string

var lineGenerator = d3.line();

var points = [
[0, 801,
(100, 100],
(200, 30],
(300, 50],
1400, 40],
[500, 80]

d3.select('path')
.attr('d', pathData)
.attr('fill', 'none')
.attr('stroke', 'black')

i» Now call lineGenerator,

passing in our data points

* pathData is i
"MO0,80L100,100L200,30L30

0,50L400,40L500,80”

A path string for SVG to draw a line

22

THE OHIO STATE UNIVERSITY

Lines — Line generator

= lineGenerator is a function that takes an array of coordinates as input and
outputs a path data string

var lineGenerator = d3.line();

var points = [
[0, 80],
[100, 100],
[200, 30],
[300, 50],
[400, 40],
[500, 80!

Il

var pathData = lineGenerator(points);
d3.select('path')
.attr('d', pathData)
Lattr('fill', 'none')
.attr('stroke', 'black')

| 23

THE OHIO STATE UNIVERSITY

Lines — Create a line chart

Data

date,value

2013-04-28,135.
2013-04-29,147.
2013-04-30,146.
2013-05-01,139.

2013-05-02,125.
2013-05-03,108.
2013-05-04,115
2013-05-05,118.
2013-05-06,124.

20,000 5

18,000

16,000

14,000

12,000

10,000 —

8,000

6,000 —

4,000 —|

2,000

T
2014

T
2015

T
2016

T
2017

T 1
2018

24

THE OHIO STATE UNIVERSITY

Lines — Create a line chart

Scale
= XScale: Date to width

= yScale: Price to height

Line generator
= Tell the generator how to map

data [date, price] to coordinates [X, V]

20,000 5

18,000 —

16,000 —|

14,000 —

12,000 —|

10,000 —|

8,000

6,000

4,000 —

2,000

T
2014

T
2015

T
2016

T
2017

T 1
2018

25

THE OHIO STATE UNIVERSITY

Time Parser

//load the data
const parseTime = d3.timeParse("%Y-%m-%d");
function convertRow(d) {
return {
date: parseTime(d.date),
value: +d.value

const data = await d3.csv("datasets/linechart.csv'", convertRow);

: {date: :00:00 GMT-0400 (Eastern Daylight value:
: {date: :00:00 GMT-0400 (Eastern Daylight value:
: {date: :00:00 GMT-0400 (Eastern Daylight value:
: {date: :00: GMT-0400 (Eastern Daylight value:
: {date: :00:00 GMT-0400 (Eastern Daylight value:
: {date: ' :00:00 GMT-0400 (Eastern Daylight value:
: {date: :00:00 GMT-0400 (Eastern Daylight value:
: {date: :00:00 GMT-0400 (Eastern Daylight value:
: {date: :00:00 GMT-0400 (Eastern Daylight value:

1 date,value
2013-04-28,135.98
2013-04-29,147.49
2013-04-30,146.93
2013-05-01,139.89
2013-05-02,125.6
2013-05-03,108.13
2013-05-04,115

= ®

W N

S U B

|

5
>
4
B
> 4
4
>
| 4
| 4

e

©o

THE OHIO STATE UNIVERSITY

Demo

| 27

THE OHIO STATE UNIVERSITY

Lines — Curve

= Draw a curve
line.curve(curveType)

var lineGenerator = d3.line()
.curve(d3.curveCardinal);

= Explore more curve types

| 28

https://www.d3indepth.com/examples-merged/shapes/curve-explorer/

THE OHIO STATE UNIVERSITY

Parallel coordinates plot (PCP)

multivariate, quantitative data
each variable is given an axis
each axis can have a different scale

values are plotted as a series of lines that
are connected across all the axes

how to draw PCP?

Variable
A

60 =

50 =

40 -

30

20 =~

Data
Variable A | Variable B | Variable C
50 100 2.0
30 115 0.5
Variable Variable
B Cc
120 = 2.5 -

115

95 =
90 =
85 =

80 =

2.0

0.5

0.0 =

https://datavizcatalogue.com/methods/parallel_coordinates.html

29

THE OHIO STATE UNIVERSITY

Parallel coordinates plot (PCP)

= XScale.domain([0,1,2]).range([0,200])

= yScales
« yScaleA
« yScaleB
« yScaleC

- data=>]

[xScale(0), yScaleA(50)],
[xScale(1), yScaleB(100)],
[xScale(2), yScaleC(2.0)]

Data

Variable
A

60 =

50 =

40 -

30

20 =~

Variable A | Variable B

Variable C

50 100

2.0

30 115

0.5

Variable
B

120 =

95 =
90 =
85 =

80 =

Variable
C

2.5

2.0

0.5

0.0 =

https://datavizcatalogue.com/methods/parallel_coordinates.html

30

THE OHIO STATE UNIVERSITY

Lines — Radial line

The radial line generator is similar to the line generator, but the points are
formed by angle in radians (clockwise) and radius, rather than x and y

= Application: Radar graphs

var radialLineGenerator = d3.radiallLine();

var points = [
[0, 80],
[Math.PI * 0.25, 80/,
[Math.PI * 0.5, 301,
[Math.PI * 0.75, 80/,
[Math.PI, 80],
[Math.PI * 1.25, 80/,
[Math.PI * 1.5, 80],
[Math.PI * 1.75, 80/,
[Math.PI * 2, 80]

1;

var radialLine = radiallLineGenerator(points);

31

THE OHIO STATE UNIVERSITY

Area

The area generator outputs path that defines an area between two lines.
= Data can be encoded into coordinates on the two lines

= Application: Stream graphs, filled line charts

var areaGenerator = d3.areal(); y=0

var points = |
(0, 80!,
1100, 100],
(200, 30],
(300, 50],
1400, 40],
[500, 80]

1;

var pathData = areaGenerator(points);
| 32

THE OHIO STATE UNIVERSITY

Area

The area generator outputs path that defines an area between two lines.

= .y0 and .y1 methods

var points = [
{x: 0, low: 30, high: 80},
{x: 100, low: 80, high: 100},
{x: 200, low: 20, high: 30},
{x: 300, low: 20, high: 50},
{x: 400, low: 10, high: 40},
{x: 500, low: 50, high: 80}

15

var areaGenerator = d3.areal)
.x(function(d) {
return d.x;
1)
.y0(function(d) {
return d. low;
1)
.y1l(function(d) {
return d.high;
I

var area = areaGenerator(points);

// Create a path element and set its d attribute
d3.select('g")
.append('path')
.attr('d’', area); | 33

THE OHIO STATE UNIVERSITY

Area - radialArea

The radial area generator is similar to the area generator, but the points are
formed by angle in radians (clockwise) and radius, rather than x and y

= Application: Filled radar graphs

var points = [var radialAreaGenerator = d3.radialArea()
{angle: 0, r0: 30, rl: 80}, .angle(function(d) {
{angle: Math.PI x 0.25, r@: 30, rl: 70}, return d.angle;
{angle: Math.PI x 0.5, r@: 30, rl: 80}, })
{angle: Math.PI x 0.75, r@: 30, rl: 70}, .innerRadius(function(d) {
{angle: Math.PI, r@: 30, rl: 80}, return d.ro;
{angle: Math.PI x 1.25, r@: 30, rl: 70}, })
{angle: Math.PI x 1.5, r@: 30, rl: 80}, .outerRadius(function(d) {
{angle: Math.PI x 1.75, r@: 30, rl: 70}, return d.ril;
{angle: Math.PI % 2, r@: 30, rl: 80} g

| 34

THE OHIO STATE UNIVERSITY

Arc

Arc generators produce path data from angle and radius values
Data can be encoded into angle and radius
= Application: Pie Chart, Donut Chart

O

THE OHIO STATE UNIVERSITY

Arc

- Example

var arcGenerator = d3.arc();

var pathData = arcGenerator({
startAngle: 0,
endAngle: 0.25 *x Math.PI,
innerRadius: 50,
outerRadius: 100

});

d3.select('qg")
.append('path')
.attr('d', pathData)
.attr('fill', 'orange')

The angle is specified in radians,
with 0 at -y (12 o’clock) and
positive angles proceeding
clockwise.

| 36

THE OHIO STATE UNIVERSITY

Arc — multiple arcs

= donut chart

var arcGenerator d3.arc()
.innerRadius (20

)
.outerRadius(100)

var arcData = [
{startAngle: 0, endAngle: 0.2},
{startAngle: 0.2, endAngle: 0.6},
{startAngle: 0.6, endAngle: 1.4},
{startAngle: 1.4, endAngle: 3},
{startAngle: 3, endAngle: 2% Math.PI}
I;

O

d3.select('g")
.selectAll('path')
.data(arcData)
.join('path')
.attr('d', arcGenerator);

THE OHIO STATE UNIVERSITY

Symbols

The symbol generator produces path data for symbols

= example

var symbolGenerator = d3.symbol()
.type(d3.symbolStar)

.51ze(80); f

d3.select('g"')
.append('path')
.attr('transform', 'translate(20,20)')
.attr('d', symbolGenerator);

= types
O dh O O pAY

d3.symbolCircle d3.symbolCross d3.symbolDiamond d3.symbolSquare d3.symbolStar

VAN

d3.symbolTriangle

Y

d3.symbolWye

38

THE OHIO STATE UNIVERSITY

What’s the gap?

= We created donut charts imperatively.

= How to calculate startAngle and endAngle based on the given data
automatically?

var arcData = |
{startAngle: 0, endAngle: 0.2},
{startAngle: 0.2, endAngle: 0.6},
{startAngle: 0.6, endAngle: 1.4},
{startAngle: 1.4, endAngle: 3},
{startAngle: 3, endAngle: 2x Math.PI}

|
M

"’

| 39

THE OHIO STATE UNIVERSITY

D3 Layouts

In essence, a layout function in D3 is just a JavaScript function that
- Takes your data as input

= Computes visual variables such as position and size to it so that we can
visualize the data

var arcData = |
{startAngle: 0, endAngle: 0.2},
{startAngle: 0.2, endAngle: 0.6},
{startAngle: 0.6, endAngle: 1.4},
{startAngle: 1.4, endAngle: 3},
{startAngle: 3, endAngle: 2x Math.PI}
1;

var data = [10, 40, 30, 20, 60]
How to generate the donut chart?

| 40

THE OHIO STATE UNIVERSITY

Pie

Given an array of data, the pie generator computes the necessary angles to
represent the data

= For example, we have an array of data: .“
var data = [10, 40, 30, 20, 60, 80];
= Apply pie generator to the data to get arcData

var pieGenerator = d3.piel();
var arcData = pieGenerator(data);

value: 10, startAngle: 6.021385919380437, endAngle: 6.283185307179586, ..}
value: 40, startAngle: 3.665191429188092, endAngle: 4.71238898038469, ..}
value: 30, startAngle: 4.71238898038469, endAngle: 5.497787143782138, ..}
value: 20, startAngle: 5.497787143782138, endAngle: 6.021385919380437, ..}
value: 60, startAngle: 2.0943951023931953, endAngle: 3.665191429188092, ..}
value: 80, startAngle: @, endAngle: 2.0943951023931953, ..}

»0: {data: 10, index:
» 1: {data: 40, index:
» 2: {data: 30, index:
» 3: {data: 20, index:
» 4: {data: 60, index:
»5: {data: 80, index:

- -

S = &b W NWDm
-

| 41

THE OHIO STATE UNIVERSITY

Pie

Example: Donut Chart

data var fruits = [

{name:
{name:
{name:
{name:
{name:

15

steps

"Apples', quantity: 20},
'Bananas’', quantity: 40},
"Cherries', quantity: 50},
"Damsons', quantity: 10},
"Elderberries', quantity: 30},

 create the arc data (startAngles and endAngles)

« specify the arc configurations

« draw the pie chart

42

THE OHIO STATE UNIVERSITY

Pie

//create the arc data (startAngles and endAngles)
var pieGenerator = d3.piel()
.value(function(d) {return d.quantity;})

var arcData = pieGenerator(fruits);

// specify the arc configuration

var arcGenerator = d3.arc()
.innerRadius(60)
.outerRadius(100);

// Create a path element and set its d attribute
d3.select('qg')

.selectAll('path')

.data(arcData)

.join('path')

.attr('d"', arcGenerator);

'1

43

THE OHIO STATE UNIVERSITY

Stack

= Stacked graphs are used to show how a larger category is divided into
smaller series/layers and what the relationship of each part has on the total

amount
i] I

000 —
800 +
700+

600 —

500
N . I
- I

200 —

Apr May Jun Jul Aug Sep Oct Nov Dec Jan

| 44

THE OHIO STATE UNIVERSITY

Stack

= d3.stack()

 Input: an array of objects (multi-series/layer data)

- Qutputs: an array representing each series with their lower and higher values

var data = [

{day: 'Mon', apricots: 120, blueberries: 180, cherries: 100},
{day: 'Tue', apricots: 60, blueberries: 185, cherries: 105},
{day: 'Wed', apricots: 100, blueberries: 215, cherries: 110},
{day: 'Thu', apricots: 8@, blueberries: 230, cherries: 105},
{day: 'Fri', apricots: 120, blueberries: 240, cherries: 105}

1s

= Example:

« data

| 45

THE OHIO STATE UNIVERSITY

Stack

= Series

* Three fruits
o Series 0: Apricots
o Series 1: Blueberries
o Series 2: Cherries

= 1. Create a stack generator

* Keys in generator are corresponding to keys in data

var data = [-———— - - - - . -————
var stack = d3.stack() {day: :Mon: ,I(:lpr'TLcots::lZO,I blueber'r'}esq 180,I cher'r'}es:: 100},
.keys(['apricots', 'blueberries', 'cherries']); {day: 'Tue',japricots: 60, jblueberries:l 185, cherries: 105},
{day: 'Wed',lapricots:;100,1blueberries:!215,1 cherries:; 110},
{day: 'Thu' ,:apr'icots:ISO, 'blueber'r'ies:: 230, cherries:1 105},
{day: 'Fri', apricots: : 120,: blueberries:i 240,, cherries:! 105}

], _____________ 7 ocoocooco

THE OHIO STATE UNIVERSITY

var data = [
{day: 'Mon', apricots: 120, blueberries: 180, cherries: 100},
StaCk {day: 'Tue', apricots: 6@, blueberries: 185, cherries: 105},
{day: 'Wed', apricots: 100, blueberries: 215, cherries: 110},
{day: 'Thu', apricots: 80, blueberries: 230, cherries: 105},
{day: 'Fri', apricots: 120, blueberries: 240, cherries: 105}

= Apply generator to data, we get: 1;

- - - - -

[[0, 120],[0, 60],[0, 100],[0, 80],[0, 120]],// Series O: Apricots
[[120, 300], [60, 245], [100, 315],[80, 310],[120, 360]], // Series 1: Blueberries
[[300, 400], [245, 350], [315, 425], [310, 415], [360, 465]]// Series 2: Cherries

. Mon Tue Wed Thu Fri
- Three arrays are the computed data for three series 0 0 0 0 0

. _ Series/Layer 0
- Each array (series) has 5 tuples, which are

lower and upper values for the bars of 5 days Series/Layer 1

Series /Layer 2

| 47

THE OHIO STATE UNIVERSITY

Stack

- 2. Create a g tag for each series

//The colors for three fruits
var colors = ['#FBB65B', '#513551', '#de3163'];

var g = d3.select('g")
.selectAll('g.series"')
.data(stackGenerator(data))
.join('g")
.style('fill', function(d, i) {
return colors|i];

}); g2

I
! | ——

B S ——

| 48

THE OHIO STATE UNIVERSITY

Stack

= 3. For each series (g tag), create rectangles

// For each series create a rect element for each day
g.selectAll('rect')
.data(function(d) {
"return_d;) [0, 120],[0, 60],[0, 100],[0, 80],[0, 120]]
1)
.join('rect"')
.attr('width', 99)
.attr('x"', function(d) {
return i x 100;
})
.attr('y', function(d, i) {
return d[0];
})
.attr('height', function(d, i) {
return d[1] - d[0];

});

| 49

THE OHIO STATE UNIVERSITY

Stack

We can generate stream graphs with the help of area generator: d3.area()

[[0, 120],[0, 60],[0, 100],(0, 80],[0, 120]]

—
N

| 50

THE OHIO STATE UNIVERSITY

Stack Customization

= offset()

stackOffsetNone
stackOffsetExpand
stackOffsetSilhouette

stackOffsetWiggle

(Default) No offset

Time (year)

Sum Of Series is normalised (to a Value of 1) 1,3‘30 1,8|90 1,5;00 1,510 1,5;20 1,530 1,9‘40 1,9;50 1,9|60 1,5;70 1,9‘30 1,5;90 2,0‘00 2,0‘10
Center of stacks is at y=0

Wiggle of layers is minimised (typically used for streamgraphs)

1,880 1,890 1,900 1,910 1,920 1,930 1,940 1,950 1,960 1,970 1,980 1,990 2,000 2,010

51

THE OHIO STATE UNIVERSITY

Example - StreamGraph

= Evolution of baby names in US

- Amanda
I Ashley
. Betty

. Deborah

. Dorothy

Helen

I Linda
u Patricia

Time (year)

[| ! | | | | | ! | | | | |
1,880 1,890 1,900 1,910 1,920 1,930 1,940 1,950 1,960 1,970 1,980 1,990 2,000 2,010

52

THE OHIO STATE UNIVERSITY

Demo

| 53

Chord

= Chord diagrams visualize links
(or flows) between a group of
nodes, where each flow has a
numeric value.

- Example:

« Migration flow between and within
regions (2005 — 2010)

54

http://download.gsb.bund.de/BIB/global_flow/

THE OHIO STATE UNIVERSITY

Node segment Arc connection

Chord - data A

= Nodes are arranged along a circle

= The relationships between points are
connected to each other either through the
use of arcs or Bézier curves.

= Values are assigned to each connection,
which is represented proportionally by the

size of each arc A B |C A .5
10| 10 10

B |10 |10 B——C

10| 10 C 10 » A

https://datavizcatalogue.com/methods/chord_diagram.html

| 55

THE OHIO STATE UNIVERSITY

Chord

= The data needs to be in the form of an n x n matrix (where n is the number
of items)

* First row represents flows from the 1st item to the 1st, 2nd and 3rd items etc.

group 0

var data = [
[10, 20, 30],
[40, 60, 80],
[100, 200, 300]

15 group 2

group 1

| 56

THE OHIO STATE UNIVERSITY

Chord

Draw a chord layout

= d3.chord() :
« Compute startAngle and endAngle for each chord {

"source": {

- padAngle(): set padding angle (gaps) between "index": 0,
. "startAngle': 0,
adjacent groups T
var chordGenerator = d3.chord(); URILE

}l

"target": {
"index": 0,
"startAngle': 0,
"endAngle":
"value":

var chords = chordGenerator(data):

THE OHIO STATE UNIVERSITY

Chord
Draw a chord layout
group 0 -
var data = [group 1 "source": {
10, |20] 301, tartanglets
40| 60, 80], .\ .
[100, 200, 300] ‘endAngle™:
. value":
13 .
group 0 -> group 1: 20 "target": {
. "index": 0,
group 1 -> group 0: 40 e

"endAngle":
"value":

| 58

THE OHIO STATE UNIVERSITY

Chord

= d3.ribbon

« Converts the chord properties (startAngle and endAngle) into path data so that we can
draw chords by SVG

 radius(): controls the radius of the final layout

var ribbonGenerator = d3.ribbon()
.radius(200);

d3.select('qg')
.selectAll('path')
.data(chords)
.join('path')
.attr('d', ribbonGenerator)

59

THE OHIO STATE UNIVERSITY

Chord o

= Group arcs

svg.selectAll('group')
.data(chords.groups)
.join('path')
.style("fill", function(d,i){
return groupColors[il;

V *.J-H ue

}) value:

[[Proto%&ée]]: Object
.style("stroke", "black") :

attr("d", d3.arc()
.innerRadius(200)

.outerRadius(210) value: 600
» [[Prototypel]: Object

THE OHIO STATE UNIVERSITY

D3 Force Layout

= D3’s force layout uses a physics-based simulator for positioning visual

elements.

all elements can be configured to repel one another

elements can be attracted to center(s) of gravity

linked elements can be set a fixed distance apart (e.g., network visualization)
elements can be configured to avoid intersecting one another (collision detection)

example 1, example 2

| 61

https://github.com/d3/d3-force
https://observablehq.com/@d3/force-directed-graph
https://www.d3indepth.com/force-layout/

THE OHIO STATE UNIVERSITY

Voronoi

= In mathematics, a Voronoi diagram is a partitioning of a plane into regions
based on the distance to points in a specific subset of the plane

» Application: Partition a plane based on points

* Implementation

| 62

https://github.com/d3/d3-delaunay

