
1|© 2021 The MathWorks, Inc.CONFIDENTIAL

Introduction to D3.js, Part II

By Rui Li
09/07/2021



2|

§ https://www.d3indepth.com/
§ https://d3js.org/

§ https://www.d3-graph-gallery.com/
§ HTML tutorial
§ Prof. Han-Wei Shen, Jiayi Xu, and Wenbin He

Slide Material Source Credits

https://www.d3indepth.com/
https://d3js.org/
https://www.d3-graph-gallery.com/
https://www.w3schools.com/js/js_htmldom.asp


3|

§ D3 – introduction
§ D3 basics

• set up
• data loading
• selection
• data binding
• scales, color mapping
• axis

Recall



4|

§ From scratch
§ Existing libraries

• d3 color legend

Color Legend

https://observablehq.com/@d3/color-legend


5|

§ Implement from scratch
• render legend shapes (e.g., rectangles and circles)
• render axis or text

Color Legend



6|

§ D3 – color legend - continuous
• create an <g> element with an id inside your

SVG
• create the legend using the Legend function
• append the legend to the <g> element

Color Legend



7|

§ D3 – color legend - nominal
• create an <div> element with an id
• create the legend using the Swatches function
• update the <div>’s HTML content with the legend

Color Legend



8|

§ D3 shapes
• SVG shapes
• Line
• Area
• Arc
• Symbol

§ D3 layouts
• Pie
• Stack
• Hierarchy
• Chord
• Force

Outline



9|

In D3, we could create an SVG shape directly.
§ rect (rectangle)

§ circle
§ line

D3 SVG shapes



10|

D3 SVG shapes - Rectangle



11|

Example: Heatmap

D3 SVG shapes - Rectangle



12|

Demo



13|

D3 SVG shapes - Circle



14|

Example: Scatterplot

D3 SVG shapes - Circle



15|

Demo



16|

D3 SVG shapes - Line



17|

Example: Lollipop chart

D3 SVG shapes - Line



18|

Demo



19|

In d3, shapes are made up of SVG path elements (d3.path)
The path element has a d attribute which defines the shape of the path.

D3 shapes

moveTo(20, 20)
lineTo(120, 20)
//<path d=“M 20 20 L 120 120”>

https://github.com/d3/d3-path


20|

§ lineGenerator is a function that takes an array of coordinates as input and
outputs a path data string

Lines – Line generator



21|

§ lineGenerator is a function that takes an array of coordinates as input and
outputs a path data string

Lines – Line generator



22|

§ lineGenerator is a function that takes an array of coordinates as input and
outputs a path data string

Lines – Line generator



23|

§ lineGenerator is a function that takes an array of coordinates as input and
outputs a path data string

Lines – Line generator



24|

§ Data

Lines – Create a line chart



25|

Scale
§ xScale: Date to width 

§ yScale: Price to height

Line generator

§ Tell the generator how to map 
data [date, price] to coordinates [x, y] 

Lines – Create a line chart



26|

Time Parser



27|

Demo



28|

§ Draw a curve

§ Explore more curve types

Lines – Curve

line.curve(curveType)

https://www.d3indepth.com/examples-merged/shapes/curve-explorer/


29|

§ multivariate, quantitative data
§ each variable is given an axis

§ each axis can have a different scale
§ values are plotted as a series of lines that

are connected across all the axes

§ how to draw PCP?

Parallel coordinates plot (PCP)

https://datavizcatalogue.com/methods/parallel_coordinates.html



30|

§ xScale.domain([0,1,2]).range([0,200])
§ yScales

• yScaleA
• yScaleB
• yScaleC

§ data => [
[xScale(0), yScaleA(50)],
[xScale(1), yScaleB(100)],
[xScale(2), yScaleC(2.0)]

]

Parallel coordinates plot (PCP)

https://datavizcatalogue.com/methods/parallel_coordinates.html



31|

The radial line generator is similar to the line generator, but the points are 
formed by angle in radians (clockwise) and radius, rather than x and y 

§ Application: Radar graphs 

Lines – Radial line



32|

The area generator outputs path that defines an area between two lines. 
§ Data can be encoded into coordinates on the two lines

§ Application: Stream graphs, filled line charts 

Area

y=0



33|

The area generator outputs path that defines an area between two lines. 
§ .y0 and .y1 methods

Area



34|

The radial area generator is similar to the area generator, but the points are 
formed by angle in radians (clockwise) and radius, rather than x and y 

§ Application: Filled radar graphs 

Area - radialArea



35|

Arc generators produce path data from angle and radius values 
§ Data can be encoded into angle and radius

§ Application: Pie Chart, Donut Chart

Arc



36|

§ Example

Arc

The angle is specified in radians, 
with 0 at -y (12 o’clock) and 
positive angles proceeding 
clockwise.



37|

§ donut chart 

Arc – multiple arcs



38|

Symbols

The symbol generator produces path data for symbols
§ example

§ types



39|

§ We created donut charts imperatively.
§ How to calculate startAngle and endAngle based on the given data 

automatically?

What’s the gap?



40|

In essence, a layout function in D3 is just a JavaScript function that 
§ Takes your data as input 

§ Computes visual variables such as position and size to it so that we can 
visualize the data 

D3 Layouts

How to generate the donut chart?



41|

Given an array of data, the pie generator computes the necessary angles to 
represent the data 

§ For example, we have an array of data:
var data = [10, 40, 30, 20, 60, 80];

§ Apply pie generator to the data to get arcData

Pie



42|

Example: Donut Chart
§ data

§ steps
• create the arc data (startAngles and endAngles)
• specify the arc configurations
• draw the pie chart

Pie



43|

Pie



44|

§ Stacked graphs are used to show how a larger category is divided into 
smaller series/layers and what the relationship of each part has on the total 
amount 

Stack



45|

§ d3.stack()
• Input: an array of objects (multi-series/layer data)
• Outputs: an array representing each series with their lower and higher values

§ Example:
• data

Stack



46|

§ Series
• Three fruits

o Series 0: Apricots
o Series 1: Blueberries 
o Series 2: Cherries

§ 1. Create a stack generator
• Keys in generator are corresponding to keys in data 

Stack



47|

§ Apply generator to data, we get:

§ Three arrays are the computed data for three series
• Each array (series) has 5 tuples, which are

lower and upper values for the bars of 5 days 

Stack



48|

§ 2. Create a g tag for each series

Stack



49|

§ 3. For each series (g tag), create rectangles

Stack



50|

We can generate stream graphs with the help of area generator: d3.area() 

Stack



51|

§ offset()

Stack Customization



52|

§ Evolution of baby names in US

Example - StreamGraph



53|

Demo



54|

§ Chord diagrams visualize links 
(or flows) between a group of 
nodes, where each flow has a 
numeric value.

§ Example:
• Migration flow between and within 

regions (2005 – 2010)

Chord

http://download.gsb.bund.de/BIB/global_flow/


55|

§ Nodes are arranged along a circle 
§ The relationships between points are 

connected to each other either through the 
use of arcs or Bézier curves. 

§ Values are assigned to each connection, 
which is represented proportionally by the 
size of each arc

Chord - data

https://datavizcatalogue.com/methods/chord_diagram.html



56|

§ The data needs to be in the form of an n x n matrix (where n is the number 
of items) 
• First row represents flows from the 1st item to the 1st, 2nd and 3rd items etc. 

Chord

group 0

group 1

group 2



57|

Draw a chord layout
§ d3.chord()

• Compute startAngle and endAngle for each chord
• padAngle(): set padding angle (gaps) between 

adjacent groups 

Chord



58|

Draw a chord layout

Chord

group 0 -> group 1: 20
group 1 -> group 0: 40

group 1
group 0



59|

§ d3.ribbon
• Converts the chord properties (startAngle and endAngle) into path data so that we can 

draw chords by SVG
• radius(): controls the radius of the final layout 

Chord



60|

§ Group arcs

Chord



61|

§ D3’s force layout uses a physics-based simulator for positioning visual 
elements.
• all elements can be configured to repel one another
• elements can be attracted to center(s) of gravity
• linked elements can be set a fixed distance apart (e.g., network visualization)
• elements can be configured to avoid intersecting one another (collision detection)
• example 1, example 2

D3 Force Layout

https://github.com/d3/d3-force
https://observablehq.com/@d3/force-directed-graph
https://www.d3indepth.com/force-layout/


62|

§ In mathematics, a Voronoi diagram is a partitioning of a plane into regions 
based on the distance to points in a specific subset of the plane
• Application: Partition a plane based on points
• Implementation

Voronoi

https://github.com/d3/d3-delaunay

